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aLW(H;net) values based on the experimental elastic 
Constants (for neutral atoms the deviations are even 
larger). However, errors in the elastic constants 
strongly influence the aLW(H;net) values based on 
them. Changes of +25% occur, if the elastic constants 
are changed by +o in a random way. Within this large 
experimental error aLW(H;net) for the charged-atom 
model shows reasonable agreement with the LW values 
calculated from the elastic constants for most re- 
flections. Exceptions are the reflections with H roughly 
parallel to 7E 1 + 2E 2 + 2E 3 (for definition of El, E2 
and E 3, see Table 1), for which aLW(H;el) is relatively 
small. 
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Abstract 

The least-squares refinement of macromolecular struc- 
tures is characterized by a low ratio of observed data to 
refined parameters. Efforts have been made to com- 
pensate for this problem by incorporating subsidiary 
restraints into the observational equations. In this 
paper, a method is proposed and examples given for the 
introduction of additional observations into a least- 
squares refinement in the form of experimental phase 
information. 

Introduction 

The reciprocal-space least-squares refinement of atomic 
coordinates is becoming a routine procedure in the 
structure determination of macromolecules. The re- 
finement of such structures is handicapped, however, 
by the comparatively low ratio of observed data to 
refined parameters. To increase the overdetermination 
of the refinement, efforts have been made to in- 
corporate additional sources of information into the 
least-squares equations (Waser, 1963). These extra 
terms are generally in the form of molecular geometry 
restraints or constraints, using stereochemical data 
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obtained from small-molecule structures. The quantity, 
¢~, minimized by the least-squares method may then be 
expressed as the sum of several terms: 

!~1_~. ~ (.Oh [ {Fo{ _ {Fe{ ]2 + ~ O.)p(po__Pmodel)2, (1) 

where the first summation is the residual between 
observed and calculated structure factors, while the 
second summation contains the restraints between 
observed and model values for various stereochemical 
parameters. The weighting functions o9 h and ogp control 
the contribution of each term to the least squares. 

Traditionally, the role of experimental phases in a 
structure determination was limited to calculation of 
the electron density. Phases have been excluded from 
least-squares refinements, although inclusion of the 
experimental phases in a structure refinement could 
approximately double the number of observations. In 
addition, several protein structure refinements suggest 
that the experimental phases may indeed contribute 
useful information to the structure refinement. Phases 
calculated from a refined model agree more closely with 
the experimental phases than phases calculated from 
the preliminary model (Watenpaugh, Sieker, Herriot & 
Jensen, 1973; Rees, Lewis & Lipscomb, 1982). 

Experimental phases usually contain significant 
random errors, but are free of systematic errors due to 
misinterpretation of the electron density map. We wish 
to demonstrate in this paper that by using appropriate 
selection criteria, experimental phases may indeed 
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provide a useful restraint in macromolecular structure 
refinements. 

T h e o r e t i c a l  b a c k g r o u n d  

The incorporation of phase restraints into a least- 
squares refinement is accomplished by introducing an 
additional term to ¢} of the form: 

Y r%(a o -- ac) 2, (2) 

where a o and a c are the experimental and calculated 
phases respectively, and o~= is the weighting function. 
The derivatives of a c required for the least-squares 
refinement have been given by Cruickshank (1952): 

0% 1 (c OB~ OA~] 
- -  - - -  os a c m _  s i n  % , ( 3 )  
Oct IFcl Ox, "~xl] 

where A~ and B~ are the real and imaginary parts of the 
calculated structure factor, Fc; and x I represents one of 
the parameters x,y,z, and Bls o, where Bis o is the isotropic 
temperature factor. 

For the experimental phases to provide additional 
information for a least-squares refinement, it is neces- 
sary to determine how errors in the experimental 
phases influence the accuracy with which coordinates 
may be determined. A probability distribution function 
to describe the magnitude of the phase error for a given 
coordinate error has been derived by Parthasarathy & 
Parthasarathi  (1974). This probability distribution may 
be used to determine the dependence of the average 
phase error, Act, on the r.m.s, coordinate error (At) 
and the fraction of scattering mass present, o 2. For 
non-centrosymmetric reflections, the probability dis- 
tribution P(IAal) may be written: 

1 -- o 2 l1 + tr A cosAa  
P(IAal )= n ( l _ o 2 c o s 2 A a  ) [ ( l _02cos2Aa) l /2  

x - + s i n  - l ( O  AcosAa)  . (4) 
2 

tr A is a product of two terms: 

OA=oD, (5) 

where D = (cos (2~hAr)) .  Luzzati (1952) has 
demonstrated that the dependence of D on Ar and 
resolution may be expressed as: 

D = exp (_~3 Ar2 sin 2 0/22). (6) 

For centrosymmetric reflections, the probability P(s), 
where s is the product of the true and calculated phase 
sign, is 

P(s) = ½ + (s/tO sin-l(oA). (7) 

The average phase error as a function of o,~ (and 
consequently of resolution, Ar, and o) may be 
determined by calculating the average: 

(IAal)  = f Ao.P(IAal) d(Aa). (8) 
0 

This integral may be evaluated analytically for centro- 
symmetric reflections. For  non-centrosymmetric re- 
flections, the integral was numerically evaluated using 
Gauss-Jacobi  quadratures (Stroud & Secrest, 1966). 
Mean phase errors as a function of resolution, Ar and 
a, for the non-centrosymmetric and centrosymmetric 
cases are iUustrated in Figs. 1 and 2, respectively. Test 
calculations based on the structure factors calculated 
from two models of carboxypeptidase A having a r.m.s. 
coordinate difference of 0.72 A show that the theoreti- 
cal phase-error distribution agrees to within 10 ° of the 
observed distribution. 

It is now possible to assess the accuracy with which 
coordinates may be determined from experimental 
phase information. For isomorphous replacement 
phases, the figure of merit, m, estimates the cosine of 
the average phase error for a given reflection (Dicker- 
son, Kendrew & Strandberg, 1961). Consequently, one 
can determine the coordinate error for a particular 
value of m at a given resolution from Figs. 1 and 2, 
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Fig. 1. The average phase difference, (IAal), between correct 

phases and phases calculated from a non-centrosymmetric 
model, with r.m.s, coordinate errors of 0.0-2.0 A, plotted as a 
function of resolution, 1/d. The corresponding values for m are 
indicated on the right-hand side. (a) a 2 = 1.0 (complete model), 
(b) a 2 = 0.8 (partial model). 
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Fig. 2. The same plots as Fig. 1 (a) and (b), but for centrosymmetric 

reflections. 
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using 02 = 1. For example, a 3 A resolution reflection 
with m = 0.8 would have an associated Ar of 0.4 A. 
Luzzati (1952) provided an analogous statistical 
method for assessing the accuracy of atomic positions 
based on the discrepancy between observed and 
calculated structure factors. 

Figs. l(b) and 2(b) also illustrate that when only a 
fraction of the atoms are included in a structure, large 
errors are present in the calculated phases, even in the 
absence of positional errors for the included atoms. 
Under these conditions, which are not uncommon 
during the early stages of macromolecular refinement, 
the potential of incorporating experimental phases into 
a refinement procedure would be enhanced. 

To utilize experimental phase information effectively 
in the least squares, it is necessary to consider the 
weighting term in (2). Least-squares weights are 
properly the reciprocal of the variance in an ob- 
servation. For the phase case, the weight may be 
estimated by 

o9,~ = ( 1/cos -1 m) 2. (9) 

Although cos-~m is strictly the average phase error, 
and not the standard deviation of the phase error, this 
approximation will not significantly influence the 
relative weighting of different terms. 

Results and discussion 

The utility of experimental phase restraints in re- 
finement was tested through model calculations on the 
dipeptide N-acetyl-L-phenylalanyl-L-tyrosine (NAPT) 
(Stenkamp & Jensen, 1973). The restrained least- 
squares program of Hendrickson & Konnert (1981) 
was modified to include the phase restraints. Relative 
weights were adjusted so that the structure factors, 
molecular geometry, and the phase information con- 
tributed equally to the diagonal elements of the normal 
matrix. 

The observed structure factors for this test were 
calculated to 2.0/i, resolution from the model co- 
ordinates using an isotropic temperature factor of 
10/I,2 for each atom. In the various test calculations, 
no errors were introduced into these Fo's, but the 
observed phases were obtained by introducing r.m.s. 
errors of 0, 10, 20 and 35 ° in the calculated phases. 
The initial model for the refinement tests was generated 
from the true coordinates by applying a 0.15/l, r.m.s. 
random shift to the x,y,z coordinates of all the atoms, 
and an additional 0.15 A systematic shift to the x 
coordinate, giving a net r.m.s, deviation of 0.297 A. 
The initial crystallographic R factor calculated for this 
model was 0.24. 

Five test refinement runs were generated varying the 
nature of the incorporated phase error. Seven cycles of 
least-squares refinement were calculated per test case. 

The r.m.s, deviations of atoms from their true position 
during each test run are shown in Fig. 3. Comparison 
of test I (perfect experimental phases) and test II (no 
phase information) demonstrates that phase infor- 
mation can noticeably accelerate convergence of the 
refinement. Introduction of an average phase error of 
either 10 ° (test III) or 20 ° (test IV) into the 
experimental phases still improves the rate of con- 
vergence relative to test II. With a 35 ° phase error (test 
V), however, the phase information actually retards 
convergence. This illustrates the importance of em- 
ploying the appropriate criteria for selecting the phases 
used in the refinement. 

If an estimate of the average coordinate error is 
available (perhaps from a 'Luzzati plot' of the 
crystallographic R factor as a function of 2 sin 0/2), a 
plot of the average error in the calculated phases versus 
2 sin 0/2 may be constructed from (6) and (8). A family 
of such curves for a range of coordinate errors is 
illustrated in Figs. 1 and 2. Reflections whose esti- 
mated experimental phase error falls below a parti- 
cular curve will help improve the refinement. On the 
other hand, reflections whose estimated phase error 
falls above a curve will be of little value in the 
refinement. Using the results of the NAPT test 
calculations when Ar = 0.297 A, we see that for values 
of 2 sin 0/2 > 0.1 A -~, reflections whose phase error is 
less than 10 ° will improve the refinement. Likewise, 
reflections with a 20 ° phase error are useful for data 
with 2 sin 0/2 > 0.2 A-k Most of the reflections used in 
the NAPT test calculations have 2 sin 0/2 values above 
0.2 A -~, and the results of test runs III and IV show 
that phases with 10 and 20 ° errors improve the 
refinement relative to test run II (no phase infor- 
mation). With a 35 ° phase error, however, only phases 
for reflections with 2 sin 0/2 > 0.4 A -~ should be used 
in the refinement; for the NAPT test calculations, this 
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Fig. 3. The r.m.s, difference between refined and correct co- 
ordinates of NAPT, as a function of the least-squares cycle 
number. Details of the refinement are presented in the text. The 
phase errors for the various test runs are: I 0°; III 10°; IV 20°; 
V 35 °. No phase information was included in run II. 
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is approximately half the observed data. As test run V 
illustrates, the phasing information is sufficiently poor 
for reflections with 2 sin 8/2 <0.4 A -1 that the refine- 
ment convergence is actually retarded. 

These considerations may be of more widespread 
utility for the general problem of combination of phases 
from different sources. Phase combination has typi- 
cally been accomplished by multiplication of the 
appropriate phase distribution curves, and then calcu- 
lating the best phase (Rossmann & Blow, 1961; 
Hendrickson & Lattmann, 1970). In general, the 
relative weights for different phase sources are de- 
termined empirically, and are not sensitive to the 
resolution of a reflection. The preceding discussion 
illustrates that a reflection with m = 0.8 may be much 
more useful at 2 A resolution than at 6 ]k resolution, 
even though the experimental phase probability dis- 
tribution curves would be similar. Attention to such 
considerations may be of some value in improving the 
power of phase combination methods. 

Phase information may also be particularly ap- 
propriate in the treatment of low-resolution reflections 
in structure refinement. Low-resolution reflections 
(2 sin 0/2 <0.1 A -1) are typically excluded from 
refinements due to neglect of the solvent in the structure 
model (Watenpaugh et al., 1973). The effect of the 
solvent is to decrease systematically the Fo's relative to 
the Fc's. Applying Babinet's principle to this problem 
indicates, however, that the solvent primarily de- 
creases the amplitude of the reflection, without chang- 
ing the phase (Moews & Kretsinger, 1975). This 
behavior is consistent with the observations of 
Lipscomb, Reeke, Hartsuck, Quiocho & Bethge 
(1970), who noted that even though F o and F c agreed 
poorly for low-resolution reflections of carboxy- 
peptidase A (when the scale factor between the two 
data sets was calculated primarily from high-resolution 
data), the phase sets agreed quite well. As a result, 
utilization of phases in a structure refinement would 
permit incorporation of information from strong 
low-resolution reflections, which are now generally 
excluded. 

Experimental phases do contain useful structural 
information, and should not be arbitrarily dismissed 
from a role in macromolecular structure refinement. 
The critical indicator for the utility of phase infor- 

mation in refinement is the quality of the experimental 
phases. Recent progress in direct refinement of ex- 
perimental phases (especially with density modifi- 
cation methods, although direct methods have also 
been used) has generated phase sets of remarkable 
quality from rather poor initial experimental phases 
(Harrison, Olson, Schutt, Winkler & Bricogne, 1978). 
Incorporation of this phase information into a least- 
squares structure refinement would provide a powerful 
method for increasing the number of experimental 
observations included in the refinement. 
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